Essentials of Interpretation

Available coupons:

Course overview

How programming languages work under the hood? What’s the difference between compiler and interpreter? What is a virtual machine, and JIT-compiler? And what about the difference between functional and imperative programming?

There are so many questions when it comes to implementing a programming language!


The problem with “compiler classes” in school is they usually are presented as some “hardcore rocket science” which is only for advanced engineers.

Moreover, classic compiler books start from the least significant topic, such as Lexical analysis, going right away deep down to the theoretical aspects of formal grammars. And by the time of implementing a first Tokenizer module, students simply lose an interest to the topic, not having a chance to actually start implementing a programing language itself. And all this is spread to a whole semester of messing with tokenizers and BNF grammars, without understanding an actual semantics of programming languages.


I believe we should be able to build and understand a full programming language semantics, end-to-end, in 4-6 hours — with a content going straight to the point, showed in live coding sessions as pair-programming, and described in a comprehensible way.

In the Essentials of Interpretations class we focus specifically on runtime semantics, and build an interpreter for a programming language very similar to JavaScript or Python.

Implementing a programing language would also make your practical usage level of other programming languages more professional.

Continue reading

Automata: building a RegExp machine

Course overview

4.8 ⭐️⭐️⭐️⭐️⭐️
Available coupons:

  • None at the moment

State machines — the fundamental concept used today in many practical applications, starting from UI programming in React, automated reply systems, lexical analysis in parsers and formal language theory — i.e. the RegExp machines, — and up to real life use cases, such as simple traffic lights, vending machines, and others.

The state machines are backed by the larger theoretical field of computer science known as Theory of Computation, and also by its direct theoretical model — the Automata Theory.

In this class we study the Automata Theory on the practical example of implementing a Regular Expressions machine.

See also: Essentials of Garbage Collectors class devoted to automatic memory management.

Continue reading

Essentials of Garbage Collectors

Available coupons:

Course overview

Memory leaks and dangling pointers are the main issues of the manual memory management. You delete a parent node in a linked list, forgetting to delete all its children first — and your memory is leaking. You delete an object chain in correct order — but suddenly your program crashes since you forgot about second owner of this resource, which now tries to dereference a null-pointer.

Continue reading